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We propose a scheme for stabilizing spatiotemporal solitons(STSs) in media with cubic self-focusing
nonlinearity and “dispersion management,” i.e., a layered structure inducing periodically alternating normal
and anomalous group-velocity dispersion. We develop a variational approximation for the STS, and verify
results by direct simulations. A stability region for the two-dimensional(2D) STS (corresponding to a planar
waveguide) is identified. At the borders between this region and that of decay of the solitons, a more sophis-
ticated stable object, in the form of a periodically oscillating bound state of two subpulses, is also found. In the
3D case(bulk medium), all the spatiotemporal pulses spread out or collapse.
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I. INTRODUCTION

Spatiotemporal solitons(STSs) in optics, dubbed “light
bullets” [1], have attracted a great deal of attention, as they
are promising objects for both fundamental[2–6] and ap-
plied [7,8] research. While stationary solutions for STSs in
the corresponding mathematical models, such as the multidi-
mensional cubic nonlinear Schrödinger(NLS) equation, can
be easily found[1], the real challenge is posed by their sta-
bility. In particular, all the solitons in the spatially uniform
NLS (or xs3d) model are unstable because of the occurrence
collapse [9]. A way around this problem is the use of a
weaker nonlinearity, such as saturable[7], cubic-quintic[10],
quadraticsxs2dd [2–6], or that induced by the self-induced
transparency[11].

To date, neither three-dimensional(3D) STSs in a bulk
medium nor their 2D counterparts in a planar waveguide
have been observed in experiment. The only experimental
finding reported thus far was in the form of stable quasi-2D
solitons in 3D crystals with thexs2d nonlinearity(i.e., solitons
which fail to confine themselves in one transversal direc-
tion). In fact, even this soliton, if created farther from the
threshold, may be subject to a different instability, viz.,
modulational instability developing along its uniform direc-
tion [12]. On the other hand, it was predicted[6] that a 2D
spatial cylindrical soliton can be quite effectively stabilized
in a bulk layeredmedium, with opposite signs of the Kerr
coefficient in adjacent layers, corresponding to self-focusing
and self-defocusing, respectively. A similar effect was then
predicted for what may be regarded as 2D STSs in Bose-
Einstein condensates(BECs), with the sign in front of the
cubic nonlinear term subject to periodic sinusoidal modula-
tion in time via the Feshbach resonance[13]. However, no
stable 3D soliton could be found in either setting(optical or
BEC) of this type. As to thexs2d media, it is relevant to
mention that stable STSs can be readily predicted in a me-
dium of “tandem” type, composed of alternating linear and
quadratically nonlinear layers[14].

Serious difficulties encountered in the experimental
search for STS inxs2d optical crystals suggest looking for

alternative settings where “light bullets” may be expected. A
possibility to support stable STS in the case of the ordinary
Kerr sxs3dd nonlinearity is to use a layered structure that does
not affect the nonlinearity(in fact, it is very difficult to invert
the sign of the Kerr coefficient), but rather gives rise to pe-
riodic reversal of the sign of local group-velocity dispersion
(GVD). This is a common setting in fiber optics, known as
“dispersion management”(DM), see, e.g., Refs.[15,16]; in
particular, the world’s first commercial fiber optic telecom-
munication link operating on solitons uses the DM technique
[17]. As a straightforward multidimensional generalization,
one can consider a layered medium(bulk or planar wave-
guide) of the same type, uniform in the transverse direc-
tion(s). The main result of this work is that STS arestablein
this setting in the 2D(planar) case, but they cannot be stabi-
lized in the 3D(bulk) case. In the 2D case, in addition to the
ordinary stable single-peaked solitons, we will also demon-
strate the existence of stable double-peaked oscillatory states,
which are bound states of two subpulses generated by the
splitting of an initial pulse.

The model outlined above is based on the normalized
equation describing the evolution of the local amplitudeu of
the electromagnetic wave propagating alongz (in suitably
defined dimensionless units)

iuz + s1/2df¹'
2 u + Dszduttg + uuu2u = 0, s1d

where the diffraction operator¹'
2 acts on the transverse co-

ordinate(s) x andy (in the 3D case), t is the ordinary reduced
temporal variable, andDszd is the same local GVD coeffi-
cient as in the usual DM models[15,16]

Dszd = HD+ . 0, 0, z, L+,

D− , 0, L+ , z, L+ + L− ; L,
s2d

which repeats periodically with the periodL. Note that Eq.
(1) has a manifest property of Galilean invariance: if
u0sx,z,td is a solution, a two-parametric family of “boosted”
(moving) solutions can be generated from it in the following
form:
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usx,z,td = expFiSqx− vt −
1

2
q2z−

1

2
v2E DszddzDG

3u0Sx − qz,z,t + vE DszddzD , s3d

whereq and v are two arbitrary real parameters(“Galilean
boosts”).

To cast the model into a normalized form, we set, by
means of obvious rescalings,D+;1,L;2. The ratioL+/L−
remains an irreducible parameter, but it is well known that,
in the usual DM model(for optical fibers), the results do not
depend on this ratio, nor separately on the soliton’s temporal
width TFWHM, but rather on the combination known as the
DM strength[15], S;sD+L++D−L−d /TFWHM

2 . Therefore, in
this paper we report results obtained forL+=L−=1 (we have
checked that the results are indeed very close for other values
of L+/L−). Then, the only remaining free parameter of the
DM map (2) is the path-average dispersion(PAD)

D̄ ; sD+L+ + D−L−d/L = s1 + D−d/2, s4d

with regard toD+=1,L±=1. The remaining parameterD−

can be expressed in terms ofD̄: as it follows from Eq.(4),
D−=2D̄−1.

It is relevant to mention that a 2D model somewhat simi-
lar to the one defined above was recently introduced in Ref.
[18]; it differs by sinusoidal modulation ofDszd, instead of
the piecewise constant mode adopted in Eq.(2) and, most
importantly, by the fact that(in the present notation) it has
the same modulated coefficientDszd multiplying both the
GVD term utt and the diffraction oneuxx. In fact, the model
introduced in Ref.[18] was motivated by a continuum limit
of some discrete models; in the present context, it would be
quite difficult to introduce the periodic reversal of the sign of
the transverse diffraction. From the standpoint of the model
proper, there is a great difference between Eq.(2), which is
strongly anisotropic in the planesx,td, and the isotropic
equation introduced in Ref.[18].

The rest of the paper is organized as follows. In Sec. II we
report results for the 2D case. By means of both the varia-
tional approximation(VA ) and direct simulations, we dem-
onstrate the existence of stable 2D STSs; stable double-
peaked oscillatory states are also reported in this section. The
3D case is considered in Sec. III, with the opposite
conclusion—no stable solitons can be found in that case(for
which we propose a simple explanation). Section III con-
cludes the paper.

II. THE TWO-DIMENSIONAL CASE

A. Variational approximation

In the case of the planar-waveguide model,¹'
2 in Eq. (1)

is replaced by]2/]x2. First, we aim to apply the variational
approximation to a search for STS solutions(a review of this
method can be found in Ref.[16]). To this end, we adopt a
straightforward Gaussian ansatz

u = AszdexpHifszd −
1

2
F x2

W2szd
+

t2

T2szdG
+

i

2
fbszdx2 + bszdt2gJ , s5d

whereA andf are the amplitude and phase of the soliton,W
and T are its transverse and temporal widths(the latter is
related to the abovementioned full width at half maximum as
follows: TFWHM=2Îln 2T), andb and b are the spatial and
temporal chirps. The Lagrangian from which the 2D version
of Eq. (2) is derived is L=s1/2de−`

+` fisuzu
* −uz

*ud− uuxu2
−Duutu2+ uuu4gdxdt. Substitution of the ansatz(5) into the
Lagrangian yields an effective Lagrangian

s4/pdLeff = A2WTf4f8 − b8W2 − b8T2 − W−2 − DT−2+ A2

− b2W2 − Dszdb2T2g, s6d

where the prime stands ford/dz.
The variational equationdL /df=0, applied to the expres-

sion (6), yields the energy-conservation relationdE/dz=0,
where

E ; A2WT. s7d

Equation(7) is used to eliminateA2 in favor of the constant
E. Then, the term,f8 in the Lagrangian may be dropped,
and it takes the form

4Leff

pE
= − b8W2 − b8T2 −

1

W2 −
Dszd
T2 +

E

WT
− b2W2

− Dszdb2T2. s8d

Varying the latter expression with respect toW,T and b,b
yields the following system of equations:

b = W8/W, b = D−1T8/T, s9d

W88 =
1

W3 −
E

2W2T
, s10d

T9 −
D8

D
T8 =

D2

T3 −
DE

2WT2 . s11d

We note in passing that, as is well known[19], in the case
of D=const.0, fixed-point(FP) solutions to the VA equa-
tions (9)–(11) are degenerate: the FP exists at a single value
of the energyE=2ÎD and, at this special value ofE, there is
a family of FPs withT=ÎDW (W is arbitrary). These results
exactly correspond to the existence of a special stationary
soliton solution to the 2D isotropic NLS equation(the
Townes soliton[9]), which exists at a single value of the
energy, but with arbitrary width. All the abovementioned FPs
are stable against small perturbations in the linear approxi-
mation, but feature a slowly(linearly, rather than exponen-
tially) growing nonlinear instability.

In the case of the piecewise constant modulation corre-
sponding to Eq.(2), the variablesW, W8, T, andb at junc-
tions between the segments withD=D± must be continuous.
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As it follows from Eq. (9), the continuity of the temporal
chirp bszd implies a jump ofT8 when passing fromD− to D+,
or vice versa:

sT8dD=D+
= sD+/D−dsT8dD=D−

. s12d

B. Numerical results

We simulated both the variational equations(9)–(11), us-
ing the Runge-Kutta method, and the underlying NLS equa-
tion(1). In the latter case, the initial state was taken as per the
ansatz(5), with zero spatial chirp(obviously, a point at
which it vanishes can always be found, so this choice does
not imply any special restriction):

u0 = A0exph− s1/2dfsx/W0d2 + st/T0d2 − ib0t2gj. s13d

Numerical results are displayed in Figs. 1–7.
Figure 1 shows the evolution of the soliton’s energy and

peak power. Very slow decay of energy is due to transient
emission of radiation from the pulse adjusting itself to the
solitonic shape, the radiation being absorbed at boundaries of
the simulation domain. The insets in Fig. 1 demonstrate how
accurately the VA predicts results of the simulations. Further,
Fig. 2 shows a sequence of the soliton’s intensity distribu-
tions through one(40th) cycle of the evolution. The latter
picture is very stable, remaining identically the same(for
instance) at the 80th cycle, thus the 2D soliton is truly stable
in the DM model. We stress that the actual shape of the pulse
remains very close to a Gaussian, which helps to understand
why the VA provides for good accuracy in this case. The
evolution of the temporal widthTszd for the same case, as
predicted by the VA, is displayed in Fig. 3. On the contrary,
the spatial widthWszd remains nearly constant, suggesting
that the stable 2D soliton may be construed, in loose terms,

as a “product” of the temporal DM soliton in thet direction,
and ordinary spatial soliton localized inx (see Ref.[3]). We
stress that no leakage from the established soliton is ob-
served, up to the accuracy of the numerical simulations. This
implies that a small amount of radiation, emitted from the
pulse when it passes the normal-dispersion slice, is absorbed
back into it in the slice with anomalous dispersion.

In some other cases, a periodic evolution occurs in a dras-
tically different fashion: the initial pulse splits into two,
which, however, do not fully separate, but rather form an
oscillatory bound state, examples of which are shown in
Figs. 4 and 5. In the case of Fig. 4, the VA still predicts a
stable soliton in the form of a single Gaussian, while in the

FIG. 1. The energy(upper curve) and peak power(squared am-
plitude) at the beginning of each cycle(lower curve) vs z, as found
from direct simulations of the 2D equation(1), starting with the
Gaussian pulse(13). Continuous lines in two insets display the
evolution of the amplitude through a few cycles at early and later
stages of the propagation. For comparison, the dotted lines show the
same as found from the variational approximation. The system pa-
rameters areD+=−D−=1, L+=L−=1, and the parameters of the ini-
tial pulse areT0=1.35,W0=1.35,E=1, andb0=−1.85.

FIG. 2. Evolution the intensity distribution in the 2D soliton
through the 40th cycle. Snapshots are taken at points corresponding
to the start, 1 /4, 1/2, and 3/4 of the cycle. Parameters are the same
as in Fig. 1.

FIG. 3. A cycle of the soliton’s evolution in thesT8 ,Td plane
according to the variational approximation, in the same case as
shown in Figs. 1 and 2. The jump inT8 occurs at the junction
betweenL+ and L−, according to Eq.(12). Unlike the temporal
width T, its spatial counterpartW remains almost constant within
the cycle.
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case of Fig. 5, VA predicts that the Gaussian-shaped soliton
cannot self-trap(the initial width was the same in both
cases). The actual behavior is similar in both cases: an initial
Gaussian with zero chirp splits into two subpulses with
chirps of opposite signs. After the establishment of stable
oscillations, a recurring pattern is observed: while passing
the layer withD=D+, the subpulses approach each other and
nearly merge; then, passing to the layer withD=D−, they
separate again and revert to the positions that they occupied
at the beginning of the cycle.

The VA makes wrong predictions in these cases, as the
simple Gaussian ansatz(5) is obviously irrelevant to describe

the split pulses. It is relevant to mention that the splitting of
an initial Gaussian is one of possible generic outcomes of the
evolution in the ordinary(1D) DM model [16,20]. However,
a cardinal difference is that no stable oscillatory bound states
resulting from the splitting have been reported in the 1D

FIG. 4. The same as in Fig. 2, but for different parameters of the
input pulse:T0=1, W0=1, E=2, andb0=0. In this case, although
the variational approximation predicts a stable single-peaked solu-
tion, the pulse splits up into an oscillatory bound state of two
subpulses.

FIG. 5. The same as in Fig. 2, but forb0=0. In this case, the
variational approximation predicts single pulse decay, but, in fact, it
evolves into two stable oscillatory bound states, as in the case of
Fig. 4.

FIG. 6. The stability diagram in the planesE,W0d of the energy
and width of the initial pulse, withW0=T0 andb0=0. Predictions of
the variational approximation are marked as follows: the stability
region is unshaded, while ones where the pulse is unstable due to
spreading out or collapse are shaded, respectively, gray and dark
gray. The numbered points are those at which direct simulations of
Eq. (1) were performed, to verify the predictions, as explained in
the text.

FIG. 7. The stability diagram in the planesE,b0d of the energy
and temporal chirp of the initial pulse. Shading has the same mean-
ing as in Fig. 6. The numbered points are explained in the text.
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model. In this connection, it may be relevant to mention that
a drastic difference of the splitting of 1D(temporal) pulses
and their spatiotemporal counterparts was observed in a re-
cent experimental work[22], which was dealing with the
propagation of ultrashort spatiotemporal pulses in water. In
this work, it was found that, while the pulse suffers on-axis
splitting, its spatially integrated temporal profile remainsun-
split.

The results outlined above are summarized in the form of
stability diagrams for the 2D solitons, which are displayed in
Figs. 6 and 7. The diagrams are generated on the basis of
simulations of the variational equations(9)–(11), which are
verified by direct simulations of Eq.(1) at sampling points
indicated in the diagrams by digits. At points 1, 2, 3, 6, 9,
and 10 the behavior predicted by the VA is confirmed by the
simulations. At points 7 and 8, a periodic split-pulse evolu-
tion is observed. It is similar to that shown above in Figs. 4
and 5. Note that this behavior, which may be interpreted as
an intermediate case between the stability and decay of a
single-peaked soliton, is indeed observed close to VA-
predicted borders between stable and decaying solitons.

At point 4, which is close to the VA-predicted border
between decay and collapse, direct simulations initially dem-
onstrate strong emission of radiation and broadening of the
pulse, which eventually cease, being changed by seemingly
chaotic oscillations of the localized pulse. There is no tan-
gible energy loss. At point 5, essentially the same chaotic
regime sets in, which is preceded, however, by a self-
compression of the initial pulse, rather than by broadening.
Lastly, at point 11, a strong transient emission of radiation is
observed, similar to point 4, but the pulse keeps its Gaussian
shape all the time, and regular periodic oscillations of the
soliton finally set in. It may happen that, at an extremely long
time scale, unaccessible for current simulations, chaotically
oscillating solitons(observed at points 4 and 5) gradually
relax towards a periodically oscillating soliton, through very
weak continuing radiation loss.

III. THE THREE-DIMENSIONAL CASE

In three dimensions, we adopt the same ansatz for the
soliton as in Eq.(5), with x replaced by the radial variabler
in the sx,yd plane. The respective effective Lagrangian is
[see Eq.(8)]

2Leff

p3/2E
= − b8W2 −

1

2
b8T2 −

1

W2 −
1

2

Dszd
T2 +

E

2Î2W2T
− b2W2

−
1

2
Dszdb2T2, s14d

and the variational equations are[see Eqs.(10) and (11)]

W9 =
1

W3 −
E

2Î2W3T
, s15d

T9 =
fDszdg2

T3 −
DszdE

2Î2W2T2
s16d

[the expressions for the chirpsb andb have the same form as
in Eq. (9)]. It is well known [19] that, in the 3D case with

D=const.0, the FP of Eqs.(15) and (16), which is W
=E/ s2Î2Dd, T=E/ s2Î2d, is subject to a linear(exponentially
growing) instability, on the contrary to the weak nonlinear
instability of the degenerate family of the FPs in the 2D case,
see above. This difference corresponds to the fact that the 3D
NLS equation gives rise to strong collapse, unlike the weak
collapse in the 2D NLS equation[9].

Systematic simulations of Eqs.(15) and (16) havenever
produced a stable regime. Instead, they always give rise to
collapse or decay of any initial pulse, as is shown in some
detail in the “instability diagram,” which is displayed in Fig.
8 (see Figs. 6 and 7 for the 2D case). In complete agreement
with this prediction, direct simulations of the full 3D equa-
tion (1) could generate only either of these two outcomes,
without revealing any stable solitonlike state. We also tried
modulating both the dispersion as above and the nonlinearity,
but the 3D soliton was still unstable. In fact, the absence of
stable 3D solitons can easily be understood, as, in the trans-
verse plane, the 3D equation(1) seems similar to the 2D
NLS equation in a uniform medium, which may produce
only theunstableTownes soliton[9].

IV. CONCLUSIONS

In this work, we have proposed a scheme for stabilizing
spatiotemporal solitons in Kerr media with a layered struc-
ture. Unlike several recent works, which relied upon periodic
alternation of the sign of the Kerr coefficient, we consider a
more experimentally realistic possibility, viz., periodic rever-
sal of the GVD sign, which resembles known dispersion-
management(DM) schemes in fiber optics. First, we have
developed the variational approximation(VA ) based on the
Gaussian ansatz for 2D and 3D STSs. In the 2D case, simu-
lations of the resulting systems of coupled variational equa-
tions, which govern the evolution of the spatial and temporal

FIG. 8. Theinstability diagram for the solitons in thesE,W0d
parameter plane, as predicted by the variational approximation in
the 3D case. Shading has the same meaning as in Fig. 6.
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widths of the STS, reveal well-defined stability regions in the
relevant parameter space. However, no stable states are pre-
dicted by the VA in the 3D case. Direct simulations of the
full NLS equation produce quite similar results: no stable
soliton in the 3D case, while in the 2D model the existence
of the VA-predicted stability region is confirmed. Addition-
ally, close to the borders between regions of stability and
decay of the 2D STS, a more sophisticated stable state, in the
form of a periodically oscillating bound state of two sub-
pulses, is found.

The general conclusion that the DM scheme can stabilize
2D solitons, but not their 3D counterparts, is in qualitative
agreement with results found in recent studies of other sta-
bilized models, such as those for optical layered media with
alternating sign of the Kerr coefficient[6], and for BECs
controlled by means of the Feshbach resonance[13]. On the
other hand, it seems quite feasible thatcomplete stabilization

of 3D STSs may be achieved if the DM in the longitudinal
(temporal) direction is combined with a periodic spatial
modulation of the refractive index in both, or maybe just
one, transverse direction in the bulk medium. This possibility
is suggested by recent results for stabilization of BEC soli-
tons in 3D optical lattices[21], and will be considered in
detail elsewhere.
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